skip to main content


Search for: All records

Creators/Authors contains: "Hall, Mary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents an overview of an NSF Research Experience for Undergraduate (REU) Site on Trust and Reproducibility of Intelligent Computation, delivered by faculty and graduate students in the Kahlert School of Computing at University of Utah. The chosen themes bring together several concerns for the future in produc- ing computational results that can be trusted: secure, reproducible, based on sound algorithmic foundations, and developed in the context of ethical considerations. The research areas represented by student projects include machine learning, high-performance computing, algorithms and applications, computer security, data science, and human-centered computing. In the first four weeks of the program, the entire student cohort spent their mornings in lessons from experts in these crosscutting topics, and used one-of-a-kind research platforms operated by the University of Utah, namely NSF-funded CloudLab and POWDER facilities; reading assignments, quizzes, and hands-on exercises reinforced the lessons. 
    more » « less
    Free, publicly-accessible full text available November 12, 2024
  2. This article presents a code generator for sparse tensor contraction computations. It leverages a mathematical representation of loop nest computations in the sparse polyhedral framework (SPF), which extends the polyhedral model to support non-affine computations, such as those that arise in sparse tensors. SPF is extended to perform layout specification, optimization, and code generation of sparse tensor code: (1) We develop a polyhedral layout specification that decouples iteration spaces for layout and computation; and (2) we develop efficient co-iteration of sparse tensors by combining polyhedra scanning over the layout of one sparse tensor with the synthesis of code to find corresponding elements in other tensors through an SMT solver. We compare the generated code with that produced by a state-of-the-art tensor compiler, TACO. We achieve on average 1.63× faster parallel performance than TACO on sparse-sparse co-iteration and describe how to improve that to 2.72× average speedup by switching the find algorithms. We also demonstrate that decoupling iteration spaces of layout and computation enables additional layout and computation combinations to be supported. 
    more » « less
  3. Many scientific applications compute using sparse data and store that data in a variety of sparse formats because each format has unique space and performance benefits. Optimizing applications that use sparse data involves translating the sparse data into the chosen format and transforming the computation to iterate over that format. This paper presents a formal definition of sparse tensor formats and an automated approach to synthesize the transformation between formats. This approach is unique in that it supports ordering constraints not supported by other approaches and synthesizes the transformation code in a high-level intermediate representation suitable for applying composable transformations such as loop fusion and temporary storage reduction. We demonstrate that the synthesized code for COO to CSR with optimizations is 2.85x faster than TACO, Intel MKL, and SPARSKIT while the more complex COO to DIA is 1.4x slower than TACO but faster than SPARSKIT and Intel MKL using the geometric average of execution time. 
    more » « less
  4. Many scientific applications compute on sparse data and use a variety of sparse formats because each format has unique space and performance benefits. Optimizing applications that use sparse data involves translating the sparse data into the chosen format and transforming the computation to iterate over that format. This paper presents a formal definition of sparse tensor formats and an automated approach to synthesize the transformation between formats. This approach is unique in that it supports ordering constraints not supported by other approaches and synthesizes the transformation code in a high-level intermediate representation suitable for applying composable transformations such as loop fusion and temporary storay reduction. We demonstrate that the synthesized code for COO to CSR with optimizations is 3.4X faster than TACO, Intel MKL and SPARSKIT while the more complex COO to DIA is slower than TACO but competitive with Intel MKL and SPARSKIT. 
    more » « less